Measure of two quantities along with the precision of respective measuring instrument  $A = 2.5\,m{s^{ - 1}} \pm 0.5\,m{s^{ - 1}}$, $B = 0.10\,s \pm 0.01\,s$ The value of $AB$ will be

  • A

    $\left( {0.25 \pm 0.08} \right)\,m$

  • B

    $\left( {0.25 \pm 0.5} \right)\,m$

  • C

    $\left( {0.25 \pm 0.05} \right)\,m$

  • D

    $\left( {0.25 \pm 0.135} \right)\,m$

Similar Questions

Write rule for error in result due to multiplication and division.

In the density measurement of a cube, the mass and edge length are measured as $(10.00 \pm 0.10)\,\,kg\,$ and $(0.10 \pm 0.01)\,\,m\,$ respectively. The error in the measurement of density is

  • [JEE MAIN 2019]

The International Avogadro Coordination project created the world's most perfect sphere using Silicon in its crystalline form. The diameter of the sphere is $9.4 \,cm$ with an uncertainty of $0.2 \,nm$. The atoms in the crystals are packed in cubes of side $a$. The side is measured with a relative error of $2 \times 10^{-9}$, and each cube has $8$ atoms in it. Then, the relative error in the mass of the sphere is closest to (assume molar mass of Silicon and Avogadro's number to be known precisely)

  • [KVPY 2021]

In order to determine the Young's Modulus of a wire of radius $0.2\, cm$ (measured using a scale of least count $=0.001\, cm )$ and length $1 \,m$ (measured using a scale of least count $=1\, mm$ ), a weight of mass $1\, kg$ (measured using a scale of least count $=1 \,g$ ) was hanged to get the elongation of $0.5\, cm$ (measured using a scale of least count $0.001\, cm$ ). What will be the fractional error in the value of Young's Modulus determined by this experiment? (in $\%$)

  • [JEE MAIN 2021]

A physical quantity $P$ is related to four observables $a, b, c$ and $d$ as follows: $P=\frac{a^{2} b^{2}}{(\sqrt{c} d)}$ The percentage errors of measurement in $a, b, c$ and $d$ are $1 \%, 3 \%, 4 \%$ and $2 \%$ respectively. What is the percentage error in the quantity $P$ ? If the value of $P$ calculated using the above relation turns out to be $3.763,$ to what value should you round off the result?